Validation of the Harvard Lyman-a in situ water vapor instrument: Implications for the mechanisms that control stratospheric water vapor

نویسندگان

  • E. M. Weinstock
  • J. B. Smith
  • D. S. Sayres
  • J. V. Pittman
  • J. R. Spackman
  • E. J. Hintsa
  • T. F. Hanisco
  • E. J. Moyer
  • J. M. St. Clair
  • M. R. Sargent
  • J. G. Anderson
چکیده

[1] Building on previously published details of the laboratory calibrations of the Harvard Lyman-a photofragment fluorescence hygrometer (HWV) on the NASA ER-2 and WB-57 aircraft, we describe here the validation process for HWV, which includes laboratory calibrations and intercomparisons with other Harvard water vapor instruments at water vapor mixing ratios from 0 to 10 ppmv, followed by in-flight intercomparisons with the same Harvard hygrometers. The observed agreement exhibited in the laboratory and during intercomparisons helps corroborate the accuracy of HWV. In light of the validated accuracy of HWV, we present and evaluate a series of intercomparisons with satellite and balloon borne water vapor instruments made from the upper troposphere to the lower stratosphere in the tropics and midlatitudes. Whether on the NASA ER-2 or WB-57 aircraft, HWV has consistently measured about 1–1.5 ppmv higher than the balloon-borne NOAA/ESRL/GMD frost point hygrometer (CMDL), the NOAA Cryogenic Frost point Hygrometer (CFH), and the Microwave Limb Sounder (MLS) on the Aura satellite in regions of the atmosphere where water vapor is <10 ppmv. Comparisons in the tropics with the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite show large variable differences near the tropopause that converge to 10% above 460 K, with HWV higher. Results we show from the Aqua Validation and Intercomparison Experiment (AquaVIT) at the AIDA chamber in Karlsruhe do not reflect the observed in-flight differences. We illustrate that the interpretation of the results of comparisons between modeled and measured representations of the seasonal cycle of water entering the lower tropical stratosphere is dictated by which data set is used.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations

[1] The cryogenic frost point hygrometer (CFH), currently built at the University of Colorado, is a new balloon borne hygrometer, which is capable of continuously measuring water vapor between the surface and the middle stratosphere. The design is loosely based on the old NOAA/CMDL frost point hygrometer, with improved accuracy and a number of significant new features that overcome some limitat...

متن کامل

ATMOS stratospheric deuterated water and implications for tropospherestratosphere transport

Measurements of the isotopic composition of stratospheric water by the ATMOS instrument are used to infer the convective history of stratospheric air. The average water vapor entering the stratosphere is found to be highly depleted of deuterium, with 6Dw of670 + 80 (67% deuterium loss). Model calculations predict, however, that under conditions of thermodynamic equilibrium, dehydration to strat...

متن کامل

برآورد انتقال بخار آب در خاک‌های غیراشباع تحت تأثیر پتانسیل اسمزی

The transport process of chemical-fertilizers, radioactive materials and other solutes in soils and porous media is important to understand the environmental and economic effects of industrial, agricultural and urban waste disposal methods. In unsaturated porous media, large gradient in aqueous osmotic potential derives significant water vapor fluxes towards regions of high solute concentration...

متن کامل

Impact of stratospheric water vapor trends on ozone chemistry

Introduction Conclusions References Tables Figures Back Close Abstract Introduction Conclusions References Tables Figures Back Close Abstract A transient model simulation from 1960 to 2000 with the coupled climate-chemistry model (CCM) ECHAM4.L39(DLR)/CHEM shows a stratospheric water vapor trend during the last two decades of +0.7 ppmv and additionally a short-term increase during volcanic erup...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009